

Solutions for Fluid Technology

VS + VSI
GEAR FLOW METERS

VS FLOW METER

VS positive displacement flow meters are volume rate measuring sensors based on the meshing gear principle and are designed for use with liquids. Two precisely matched gear wheels are enclosed in a very accurately machined housing. Gear rotation is sensed by a non-contacting signal pick-up system. Each tooth produces one impulse.

The space between the gear teeth, when fully enclosed on both sides by the housing, constitutes measuring chambers. Fluid flow causes the gears to rotate and the incoming flow is separated into discrete volumes within these chambers i. e. the volume of liquid passing through the unit will cause rotation of the gears by exactly one tooth pitch.

This volume is known as the Volume/Impulse (V_m) and is stated in cc/Imp. It is used to define the size of a flow meter.

EXPLANATIONS FOR PREAMPLIFIER OF SIGNAL PICK-UP SYSTEM

The non-contact pick-up sensors consist of two differential magneto resistors, which are circumferentially offset from one another by 1/4 of a tooth pitch. The signals of both pick-up sensors are digitised with two signal amplifiers and amplified via followed short circuit proof push-pull output stages.

The square wave output signals are bidirectional and may be simply processed by any external electronics, plc control or computer. The processing of the 90° phase angle between signals enables recognition of flow direction and impulse rate conversion with a factor of 1, 2 and 4.

The signal frequency is proportional to the momentary flow rate (volume rate) dependent on the particular flow meter size. The frequency range extends from 0 – 2000 Hz. The preamplifier is protected against reverse polarity and incorrect connection. For medium temperatures between -40°C and 120°C (-22°F and 248°F) the unit is mounted directly on the flow meter cover.

SENSOR SYSTEMS FOR EXTENDED TEMPERATURE RANGE

For liquid temperatures from -40°C up to 210°C a special pick up system is available.

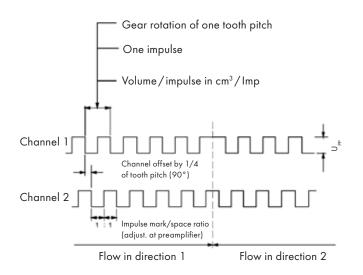
VSI HIGH DEFINITION PREAMPLIFIER

The VSI High Definition Preamplifier supplies digital signals with a higher resolution of the measured value. The high definition preamplifier is available in two versions.

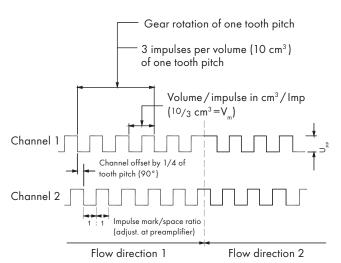
The first version has a selectable resolution between 4 and 64 angle steps which enables an increase of the K-factor by 16 or 64 with an edge evaluation. The other version offers more performance. A very big advantage is the compatibility. With this version, preamplifiers of the standard VS and the VSI series are interchangeable. The customer can therefore easily replace or upgrade a preamplifier himself. In addition, this preamplifier electronics offers an selectable resolution between 4 and 128 angular steps, which allows a maximum increase of the K-factor by 32 or 128 with an edge evaluation.

EX-TYPES

Intrinsically safe models, with approval code II 1G Ex ia IIC T4-T6, are supplied for applications in potentially explosion-hazardous areas. VSE delivers these types with isolation switch amplifier models MK 13 P Ex O/ 24 VDC / K15.


VS FLOW METER SELECTION

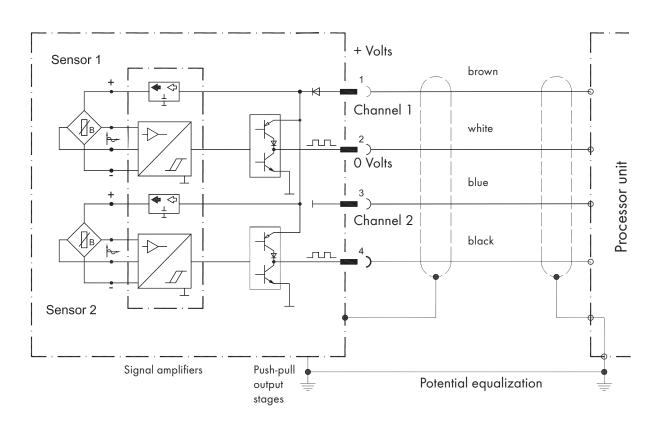
For trouble-free and safe operation of the flow meters the correct selection of type and size is decisive. Due to the great number of different applications and flow meter versions, the technical data in the VSE catalogues are of general character.


Certain characteristics of the devices depend on type, size and measuring range as well as on the medium to be measured. For exact flow meter selection please contact VSE.

The current publication of this catalogue supersedes all information from previous publications. VSE reserves the right to make changes and substitutions. VSE is not liable for any printing errors. Reproduction, including excerpts, is permitted only after written approval by VSE. Last revised: 07/2020

FLOW METER VS 0.02... VS 4

FLOW METER VS 10


VOLTAGE RANGES

Supply voltages: $U_v = 10 \dots 28 \text{ V DC}$ Impulse voltages: $U_{pp} = U_v - 1 \text{ V}$

VOLTAGE RANGES

Supply voltages: $U_v = 10 \dots 28 \text{ V DC}$ Impulse voltages: $U_{pp} = U_v - 1 \text{ V}$

BLOCK DIAGRAM

APPLICATIONS

All liquids that can be pumped and have known lubrication properties can be measured, for example: paraffin, kerosene, benzine, diesel, Skydrol, mineral oils, hydraulic oils including fire resistant fluids, inks, dyes and paints, greases, polyurethane, polyol and isocyanates, Araldite, glues, pastes and creams, resins, waxes and many others.

RANGES OF APPLICATIONS IN THE AUTOMOTIVE INDUSTRY

Braking system test stands

Fuel consumption measurement

Polyurethane foams for steering wheels, fascia, seats etc.

Paint spraying systems

Steering systems

Batching and filling of motor oils, brake fluids, anti-freeze, corrosion preventatives, waxes etc.

Adhesive coatings for windscreens, headlights, engine housings etc.

HYDRAULICS

Volume and flow rate measurement

Leakage and rupture monitoring

Cylinder speed and position measurement

Positioning and step control

Measurement, control and regulation of flow rates and volumes

Test stands for pumps, motors, valves, proportionals and servo-valves

Synchronised multi-cylinder monitoring

Filling and additive blending

DYES AND PAINTS

Paint spraying systems

Batching and filling

Volume, flow rate and consumption

Monitoring of mixing ratios

PLASTICS TECHNOLOGY

Mixing, moulding and batching systems for single and multicomponent fluid plastics

Consumption measurement of e.g.:

Epoxy adhesives and potting compounds (resins and hardeners) for transformers, coils, relays, condensers, armatures, initiators, auto-electronics

Measuring, control and regulation of single components and mixing ratios

Silicon potting compounds

Polyurethane foams (polyol and isocyanate) for steering wheels, seals, shoes, soles, surf boards, furniture, computer casings, isolation etc.

Hot adhesive

CHEMICAL INDUSTRY

Flow rate and volume measurement in process plants and plant systems

Dosing and filling of chemical products such as liquid plastics, adhesives, resins, hardeners, potting compounds, solvents, fuels, foams, plasticisers, dyes and paints, oils and synthetic products etc., application in laboratories and manufacturing plants (in normal and explosion-hazardous areas)

Control and regulation of single components, mixing ratios and consumption of various components

Leakage measurement and leakage monitoring on plants

Measurement, indication and logging of data for product quality assurance

Special designs on request

Size	Flow range*	Flow range*	K-factor	K-factor
	I/min	GPM	Imp./l	Imp./Gal.
VS 0.02	0.002 2	0.0005 0.53	50,000	189,272.00
VS 0.04	0.004 4	0.0011 1.06	25,000	94,636.00
VS 0.1	0.01 10	0.0026 2.64	10,000	37,854.40
VS 0.2	0.02 18	0.0053 4.76	5,000	18,927.20
VS 0.4	0.03 40	0.0079 10.57	2,500	9,463.60
VS 1	0.05 80	0.0132 21.13	1,000	3,785.44
VS 2	0.1 120	0.0264 31.70	500	1,892.72
VS 4	1 250	0.2642 66.00	250	946.36
VS 10	1.5 525	0.39 138.00	300	1,135.63
	*at 21 cSt	*at 21 cSt		

CALCULATION FACTOR

1 litre = 0.26417 U.S. Gallon 1 U.S. Gallon = 3.78544 litre 1 bar = 14.503684 psi

1 psi = 0.068948 bar

 $^{\circ}C = \frac{5 \times (^{\circ}F - 32)}{9}$ psi = pound-weight per square inch

 $^{\circ}F = \frac{9 \times ^{\circ}C}{5} + 32 \text{ GPM} = \text{U.S.Gallon}$ per minute

	0.00/_6								
Accuracy	up to 0.3 % of measured value at viscosity > 20 cSt								
	(< 20 cSt reduced accuracy)								
Repeatability	± 0.05 % under san	± 0.05 % under same operating conditions							
Materials	Body		Bearings	Seals					
	EN-GJS-400-15 (EN	1 1563)	Ball/Plain/Plain	FPM (standard)					
	Stainless Steel 1.43	05	(Copper-free)	NBR, PTFE, EPDM					
			depend on liquid	, ,					
Max. operating	Cast iron		Stainless steel						
pressures	315 bar/4,568 psi		450 bar / 6,526 psi						
Medium temperature	Standard		-40 ≤ 120° C						
	Ex-design		-20 ≤ 100° C (T4)						
	High temperature		-40 ≤ 210° C						
Viscosity ranges	1100,000 cSt								
Mounting positions	Unrestricted, on sub	plate with	side or bottom connection	ns					
Filtering	VS 0.02/0.04/0.1	10 µm	Exceptions						
for ball bearing type	VS 0.2/0.4	20 µm							
	VS 1/2 50 µm		Flow meters with specia	l clearance on request.					
	VS 4	50 μm							
Noise level	Max. 72 dB(A)								
Preamplifier	10 to 28 Volt (DC)								

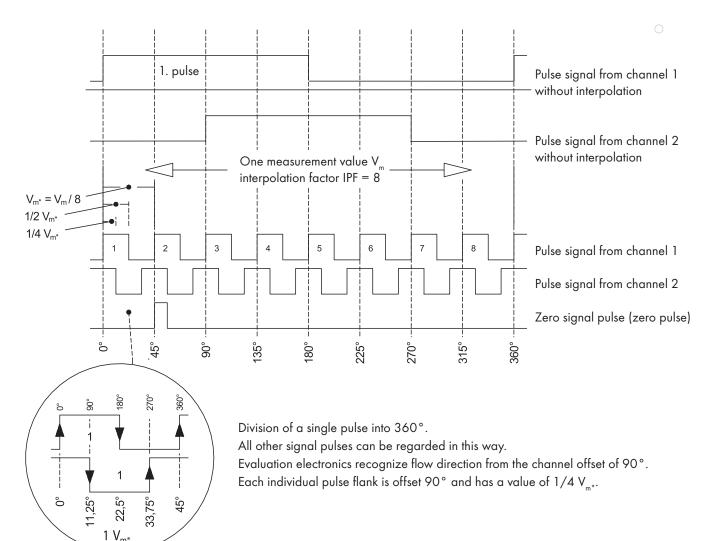
TECHNICAL DATA

Size	Flow range I/min		K-Factor Imp./I	Imp./Gal.
VS 10	1.5 525	0.3963 138.69	300	1,135.63

Accuracy	up to 0.3 % of measured value at viscosity > 20 cSt (< 20 cSt reduced accuracy)					
Repeatability	± 0.05 % under same ope	erating conditions				
Materials	Body	Body Bearings Seals				
	EN-GJS-600-3 EN 1563	Ball / Plain gearings depend on liquid	FPM (Standard) NBR, PTFE, EPDM			
Max. operating	400 bar/6,000 psi					
pressure						
Medium temperature	Standard	-40 ≤ 120° C				
	Ex-design	-20 ≤ 100° C (T4)				
	High temperature	not available				
Viscosity range	1 100,000 cSt					
Mounting positions	Unrestricted, on subplate	with side or bottom connect	ions			
Filtering	50 μm					
Preamplifier	Short circuit proof and rev	rerse polarity proof 10 28 al output max. 20 mA	3 V DC/45 mA,			

THE VSI HIGH DEFINITION PREAMPLIFIER

For precise and exact flow and volume measurements, it is necessary to increase the resolution as high as possible by resolving the measurement $V_{\rm m}$, even more than with conventional preamplifiers.


With the VSI-preamplifier versions a selectable resolution of up to 128 flanks (32 pulses) per period can be attained (see table below).

This means that you can resolve the volume measurement $V_{\rm m}$ with this preamplifier to a maximum of $1/128~V_{\rm m}$.

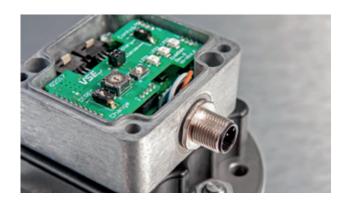
For the evaluation, this means that a part volume of $1/128~V_m$ from pulse flank to pulse flank (for quadruple evaluation or flank count) is measured, or a full signal pulse is counted as part volume of $1/32~V_m$ (pulse count) (see fig. 3, interpolation $V_m/16$).

This individually programmed high resolution enables you to set the volume measurement V_m optimally for each provided case of application. Furthermore, new applications can be availed with the higher resolution

- Measuring, controlling and regulating in lower flow ranges
- Measuring, controlling and regulating in zero flow
- Measuring, controlling and regulating in both flow directions
- Measuring, controlling, dosing and filling of small volumes

TECHNICAL DATA OF VSI PREAMPLIFIER

Pickup sensor	2 x MR sensor (sine and cosine signals)					
Number of sensors	Two pick up sensors for generating the sine and cosine signal					
Adjustment	Offset adjustment by two potentiometers					
Resolution	Programmable in a range of 1 – 64 flanks per volume measurement V _m					
Frequency	Frequency multiplication: programmable in a range of 1 – 16 times the frequency of the pick-up sensors					
Output signals	Channel A, channel B, zero channel Z					
Channel A and B	Two signal outputs for emitting the digital flow sensor signals; between channel A and channel B there is a channel offset of 90°					
Flow direction	Recognition of flow direction from channel offset of the signals from channel A to channel B					
Zero signal Z	Zero signal, marks the flow of one volume measurement V _m					
Outputs	3 current limiting and short-circuit-proof push-pull output stages (channel A, channel B, zero signal Z); driver current approx. 300 mA at 24 V power supply; small saturation voltage up to 30 mA load current; short switching times; reverse voltage protection by integrated freerun diodes against V _b and GND; temperature protection switching with hysteresis; outputs are of high impedance in case of error; ESD protected					
Operating voltage	V _b = 10 28 VDC					
Current consumption	VI _{no load} = approx. 40 mA; total current consumption depending on loading of outputs					


TECHNICAL DATA OF VSI PREAMPLIFIER – UPGRADE (HIGH PERFORMANCE)

Pickup sensor	2 x MR-sensor (sine and cosine signals)
Configuration	automatically via peripheral board
Resolution	programmable 1, 2, 3, 4, 5, 8, 10, 12, 16, 24, 32
Frequency	up to 100kHz
Output signals	Channel A, channel B, direction signal "DIREC" (high positiv; low negativ)
Channel A and B	Two signal outputs for emitting the digital flow sensor signals; between channel A and channel B there is a channel offset of 90°
Flow direction	Recognition of flow direction from channel offset of the signals from channel A to channel B or from the separate direction signal on pin 5, direction can be changed by the preamplifier electronics
Outputs	3 current limiting and short-circuit-proof push-pull output stages (channel A, channel B, DIREC); driver current approx. 200 mA at 24 V power supply; small saturation voltage up to 30 mA load current; short switching times; reverse voltage protection by integrated freerun diodes against V _b and GND; temperature protection switching with hysteresis; outputs are of high impedance in case of error; ESD protected
Error messages	Electronics error (e.g. defective interpolator); sensor error(e.g. sensor break-off); configuration necessary; overload (flow peaks)
Operating voltage	V _b = 10 28 VDC
Current comsumption	I _{leer} = approx. 65 mA; total current consumption depending on loading of outputs

ADVANTAGES

Easy replaceable, Upgrade for standard VS, higher resolution, more stability under harsh conditions

Interpolation factor	Imp/V _m	Max. resolution (evaluation of signal flanks)	Resolution V _{m*} (volume measure- ment V _{m*}) [ml]	Max. resolution (angle degrees)	Frequency f _{max*}
1	1	4 (quadrupling)	$V_{_{m}}$ / 4	90°	$f_{max} \times 1$
2	2	8	V _m / 8	45°	f _{max} x 2
3	3	12	V _m /12	30°	$f_{max} \times 3$
4	4	16	V _m /16	22.5°	f _{max} x 4
5	5	20	$V_m/20$	18°	$f_{max} \times 5$
8	8	32	V _m /32	11.25°	f _{max} x 8
10	10	40	$V_{_{m}}/40$	9°	$f_{max} \times 10$
12	12	48	V _m /48	7.5°	f _{max} x 12
16	16	64	V _m /64	5.625°	f _{max} x 16
24*	24	96	V _m /96	3.75°	f _{max} x 24
32*	32	128	V _m /128	2.8125°	f _{max} x 32

^{*}Only VSI upgrade version

Column 1: Programmable interpolation factor IPF (programming is done in the factory)

Column 2: Pulses per volume measurement V_m

Column 3: Maximum resolution of the signal flanks. The signal flanks channels 1 and 2 are evaluated

Column 4: Volume measurement V_{m^*} resulting from the maximum resolution of the signal flanks

Column 5: Maximum resolution in angle degrees at resolution of signal flanks

Column 6: Maximum frequency f_{max^*} at maximum flow Q_{max} and programmed interpolation factor IPF

In practice the maximum flow Q_{max} of the flow meter is seldom run so that a lower frequency can be calculated. The maximum frequency is then calculated according to the following formula:

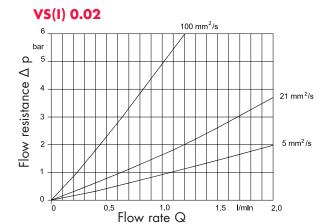
$$f_{max}^{*} = \frac{(Q_{max})^* IPF}{V_{m}}$$
 formula 1

f_{max*}
Maximum frequency of the flow meter signals

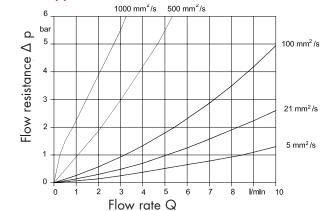
Q_{max}
Maximum flow attained in the case of application described here

IPF
Programmed interpolation factor

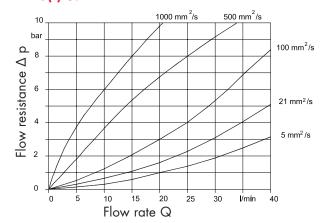
V
Volume measurement of the flow meter

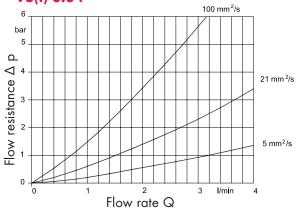

Example Flow meter VSI 1/10... max. flow rate of the system at maximum capacity

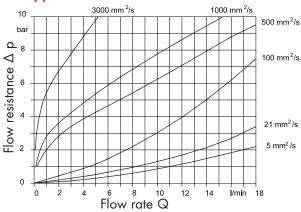
Q = 40 l/min = 666.667 ml/sec; IPF = 10;

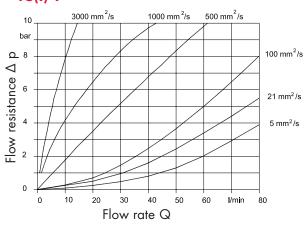

$$V_m$$
 = 1 ml/pulse; f_{max^*} = 6666.67 Hz
= 6.66667 kHz

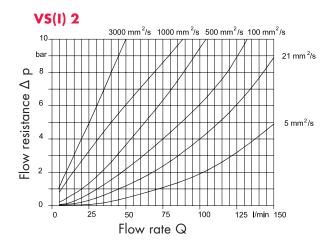
At max. flow_{max*} = 40 l/min, the flow meter VSI 1/10... outputs a frequency of

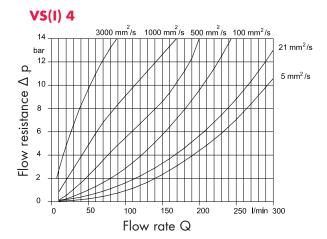

 $f_{max^*} = 6666.67 \text{ Hz}.$

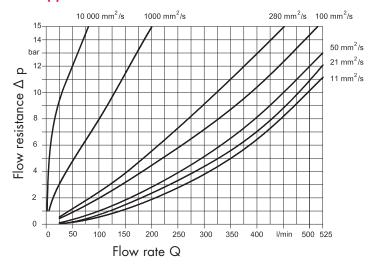

VS(I) 0.1

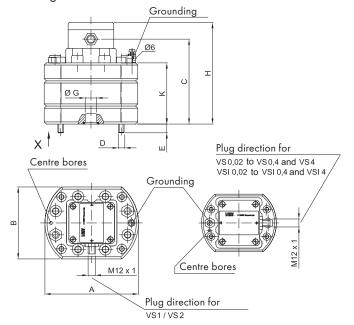

VS(I) 0.4


VS(I) 0.04

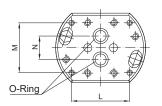



VS(I) 0.2


VS(I) 1

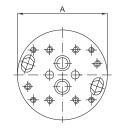

VS(I) 10

VS(I) FLOW METER DIMENSIONS VS(I) 0.02 ... VS(I) 4


CAST IRON VERSION

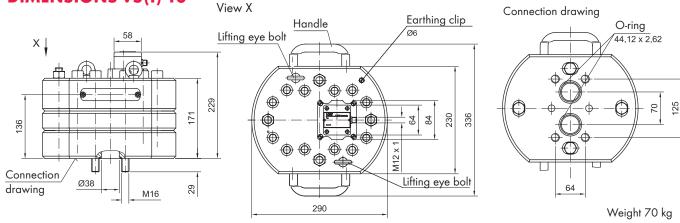
Housing curve mill cutted

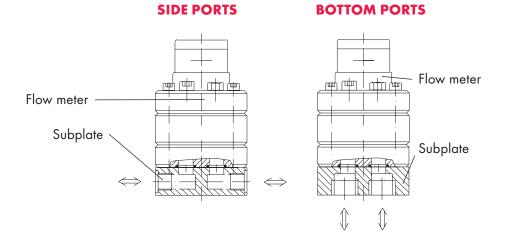
CAST IRON VERSION CONNECTION DRAWING


View X

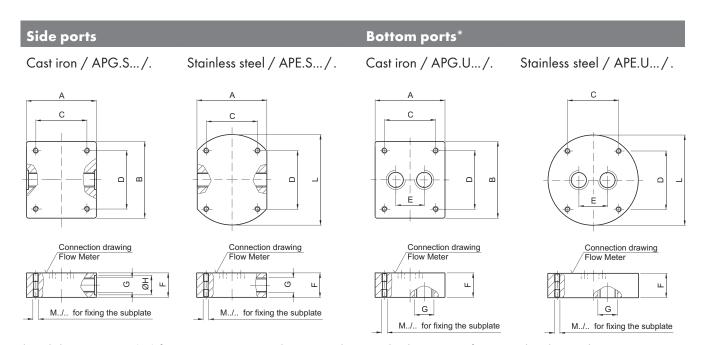
STAINLESS STEEL VERSION CONNECTION DRAWING

Housing not mill cutted

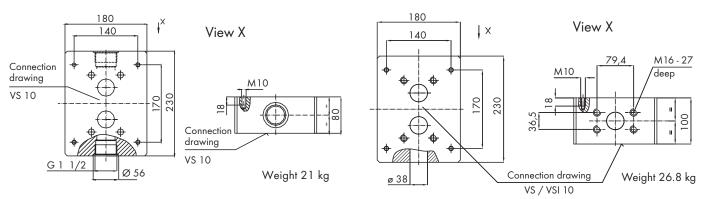

View X


Size														Wei	ight
VS/VSI	A	В	С	D	E	øG	Н	K	L	M	N	O-l	Ring	GG* kg	E** kg
0.02	100	80	91	M 6	12	ø 9	114	58	70	40	20	11	x 2	2.8	3.4
0.04	100	80	91.5	M 6	11.5	ø 9	114.5	58.5	70	40	20	11	x 2	2.8	3.4
0.1	100	80	94	M 6	9	ø 9	117	61	70	40	20	11	x 2	2.8	3.4
0.2	100	80	93.5	M 6	9.5	ø 9	116.5	60.5	70	40	20	11	x 2	3.0	3.7
0.4	115	90	96.5	M 8	11.5	ø 16	119.5	63.5	80	38	34	1 <i>7</i> .96	x 2.62	4.0	5.0
1	130	100	101	M 8	12	ø 16	124	68	84	72	34	17.96	x 2.62	5.3	6.8
2	130	100	118	M 8	15	ø 16	141	85	84	72	34	17.96	x 2.62	6.7	8.4
4	180	140	143	M 12	20	ø 30	166	110	46	95	45	36.17	x 2.62	14.7	18.4

^{*}GG = Cast Iron EN-GJS-400-15 (EN 1563) Dimensions are specified in mm


DIMENSIONS VS(I) 10

^{**} E = Stainless Steel 1.4305

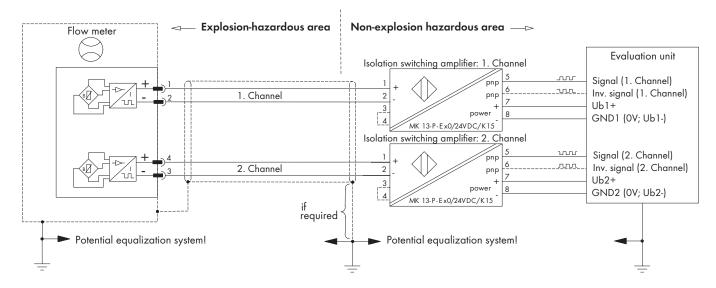


AP SUBPLATE DIMENSIONS

^{*} Both bottom ports (G) for size APG 4 U and APE 4 U have a displacement of 90° to the shown drawings.

APG 10 S GON / 1

Dimensions are specified in mm


	VS/VSI		G	F	øΗ	E ①
	0.02 / 0.04		G 1/4	35	ø 20	26
	0.1 / 0.2					
	0.02 / 0.04		G 3/8	35	ø 23	30
	0.1 / 0.2					
Affiliated	0.02 / 0.04	G pipe thread	G 1/2	35	ø 28	38
size	0.1 / 0.2	classification				
	0.4 / 1 / 2		G 1/2	35	ø 28	46
	0.4 / 1 / 2		G 3/4	40	ø 33	52
	1 / 2		G 1	55	ø 41	55
	4		G 1 1/4	70	ø 51	60
	4		G 1 1/2	APU=70	ø 56	72
	4		G 1 1/2	APS=80	ø 56	72

Size							Depth	Weight
VS/VSI	AP	A	В	С	D	L 2	M	kg
0.02/0.04 0.1/0.2	AP.02	80	90	40	70	100	M6/12	1.8
0.4	AP.04	90	100	38	80	115	M8/15	2.7
1/2	AP.1	100	110	72	84	130	M8/15	3.6
4	APG4	120	130	100	110	-	M8/15	7.4
	APG4 UG	140	120	120	100	-	M8/15	7.4
	APE.4	140	_	100	110	180	M8/15	12

① Only for APG.U .../.; APE.U .../. ② Only for APE.S .../.; APE.U .../.

Special designs on request

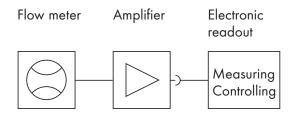
VSE FLOW METERS IN EX-DESIGN/THE BARRIER AMPLIFIER

VSE FLOW METERS IN EX-DESIGN

The VSE flow meters of the VS series in Ex-design are approved for applications in potentially explosion-hazardous areas and are always operated in conjunction with barrier amplifiers. They have blue markings and offer the necessary Ex-protection security. The type plate shows the necessary description according to DIN EN 60079, the type key and the safety-related and electric data. VSE can supply the flow meters with the barrier amplifiers type MK 13-P-Ex 0/24 VDC/K15.

THE BARRIER AMPLIFIER MK 13-P-EX 0/24 VDC/K15

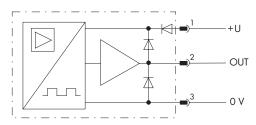
The barrier amplifier MK 13-P-Ex 0/24 VDC/ K15 enables an isolated transmission of binary switching status. It has an intrinsically safe control circuit and is certified according to E II(1) GD [EEx ia] II C.


There is a galvanic separation from the control circuit to the output circuit and to the power supply. For the transmission of two channels, two barrier amplifiers of this version are necessary. The control circuit can be monitored concerning wire breaking and short circuit (the monitoring can be switched off via a wire jumper).

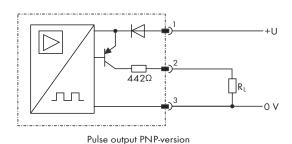
An error in the control circuit stops the signal output. One pluse-switching short circuit proof transistor output (PNP-output) provides the digital signal of the connected channel.

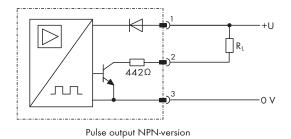
Flow meter	VSE connection cable, blue	Barrier amplifier					
Type VS****-32 Q1*/*	Shielded; 4 x 0.34 mm²	Type MK 13-P-Ex 0/24 VDC/K15					
BVS 05 ATEX E 071 X	PUR	PTB 06ATEX 2025					
⑤ 1G Ex ia C T4-T6							
$U_{i} = 18.5 \text{ V}$	$R = 0.053 \Omega/m$	U ₀ = 9,9 V					
I _i = 24 mA	$L = 0.85 \mu H/m (x)$	I _o = 22 mA					
$P_i = 100 \text{ mW}$	$C_{A-A} = 55 \text{ pF/m}$ (x)	$P_{\circ} = 54 \text{ mW}$					
$R_i = 0$	$C_{A-S} = 105 \text{ pF/m} \text{ (x)}$						
$L_i = 0$	[(x) = Measured at 1000 Hz]						
$C_{i} = 0.27 \mu F$		IIC IIB					
		Lo/mH 1 5 10 2 10 20					
		Co/μF 1.1 0.75 0.65 5 3.5 3					

Temperature class	T4		T5	T6
Ambient temperature	- 20°C ≤ T _{amb} ≤	95°C	-20 °C $\leq T_{amb} \leq 70$ °C	-20 °C $\leq T_{amb} \leq 55$ °C
Liquid temperature	- 20°C ≤ T _{Med} ≤	100°C	- 20°C ≤ T _{Med} ≤ 75°C	- 20°C ≤ T _{Med} ≤ 60°C


OPTION FOR STAINLESS STEEL FLOW METERS VS 0.04 ... VS 4

The pick-up system consists of one or two sensor units, which are screwed into the cover of the VS flow meter and of a downstream switched amplifier. This amplifier is connected with the flow meter by means of a temperature resistant cable and has to be installed outside the high temperature area, where the ambient temperature should not exceed 50 °C.

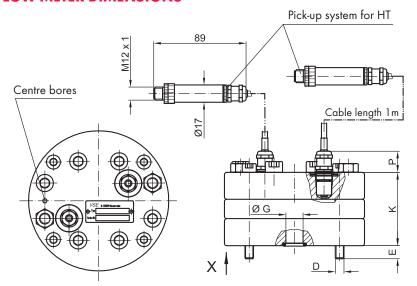

The following pictures show the respective connection of the electronic readout.

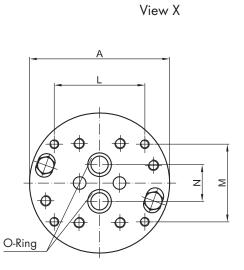

For long cable lengths and high input impedance of the readout, it is recommended to use shielded cables.

CONNECTION DIAGRAMS

Pulse output PP-version

TECHNICAL DATA/FLOW METER DIMENSIONS


TECHNICAL DATA: SENSOR UNIT


Medium temperature	-40° C 210° C
Number of pick-ups	1 or 2 pick-ups
Pick-up	Magnetoresistive
Electrical connection	cable gland
Seals	FPM or EPDM

TECHNICAL DATA: AMPLIFIER

Supply voltage	$U_b = 10 30 \text{ V DC +/-}10\%$
Current consumption	I _b = approx. 18 mA (idle motion, without load)
Signal output PP	High Sign.: $U_s = U_b - 1.5 \text{ V}$;
(Push-Pull)	Low Sign.: $U_s = 0 V$;
	$I_s = 100 \text{ mA max}$
Signal output PNP	High sign: $U_s = U_b - 1 \text{ V; } I_s = 25 \text{ mA max}$
Signal output NPN	Low sign: $U_s = 0 \text{ V; } I_s = 25 \text{ mA max}$
Electrical connection	4 pin round plug M12
Max. ambient temperature	-20°C 50°C
Protection class	IP 64

FLOW METER DIMENSIONS

Size	A	D	E	ø G	К	L	М	N	P	O-Ring	Weight kg
VS 0.04*	100	M 6	11.5	ø 9	58.5	70	40	20	22	11 x 2	3.5
VS 0.1	100	M 6	9	ø 9	61	70	40	20	22	11 x 2	3.3
VS 0.2	100	M 6	9.5	ø 9	60.5	70	40	20	22	11 x 2	3.6
VS 0.4	115	M 8	11.5	ø 16	63.5	80	38	34	22	17.96 x 2.62	4.9
VS 1	130	M 8	12	ø 16	68	84	72	34	22	17.96 x 2.62	6.7
VS 2	130	M 8	15	ø 16	85	84	72	34	22	17.96 x 2.62	8.3
VS 4	180	M 12	20	ø 30	110	46	95	45	12	36.17 x 2.62	18.3

^{*}Attention: 0.04 with one (1) channel only

TYPE KEY FLOW METERS VS

EXAMPLE

Н	T	Pick-ı	up sys	tem fo	r high	temp	erature ranges (210°C) signal output PNP or NPN
Н	Т				/	Х	

VS 1	G	Р	0	1	2	٧	-	3	2	N	1	1	/	Х	
		Type of connection	O Gear coating	a to the application a lostruments bearing Factory preset to the application	1 S B C C C C Instrument tolerance Factory preset to the application	S B S Lype of seal	F N P E E S Solerar aring a beau plain b I plain b Stand	PPM (V NBR (F TFE PDM- illiconned toler toler and bear n bear ard)	dn-yoid Jo Ajinan O 1 2 (/iton) Perbur 41B8 e erance elerance elerance g	tnd-tno langis	o 1 2 S S S S S S S S S S S ard	1 Connection	lon pi ntegra xterno volta	x SE 4 pre-ampted	No. factory preset pole plug connection (Standard design) Diffier 1 28 V DC (Standard) 1 10 V DC (Ex-design)
	Material	P	T P		itaniur onstru	n coat	ting								
	Wa	R	P	ipelin	e conr	nection									
Size	G E H	S	tainle	ss stee	el 1.∠	VS10 4305 igh pr	(V2A	()				1563			
VS 0.02 VS 0.04 VS 0.1 VS 0.2 VS 0.4 VS 1 VS 2 VS 4 VS 10															

SUBPLATES AP

EXAMPLE

Α	Р	G	1	_	S	С	0	N	/	X										
						Connection thread	Accessory connection	X Version		X Broduct line	Modification Id. No.									
						onne	¥	S		Specia	al version									
						O	0		Withou	ut rinse	connection									
						Α	l	G 1/4												
						В	l	G 3/8												
						С	l	G 1/2												
						D E		G 3/4 G 1												
						F		G 1 1/	4											
						G		G 1 1/												
						J		1/4 NF	PΤ											
						K		3/8 NPT												
						L		1/2 NF												
						M		3/4 NF												
						N		1 NPT												
						0		1 1/4 1												
						Р		1 1/2 1	NPI											
						S		SAE 1	/2											
					_	Т		SAE 3												
					ectio	U		SAE 1												
) Sonn	V		SAE 1	1/4											
					Side connection	W		SAE 1	1/2											
					S	Х		SAE 2												
			Size		S	ı		connect m conn												
			0,2		VS 0,0	02 to '	VS 0,2	2 / VS	SI 0,02	to VS	SI 0,2									
			0,4	l		4 / VS														
			1	l				11 / V	SI 2											
		Material	4		VS 4	/ VSI 4	4													
		Mat	10		VS 10	/ VS	I 10													
l te		G		EN-G	JL-250	, EN-G	JS-40	0-15	DIN EN	N 1561	/ 1563									
Subplate		Е		Stainle	ess ste	el 1.43	805													
ૉ		Н		EN-G	JS-600	-3 DII	N EN	1563 (Stainless steel 1.4305 EN-GJS-600-3 DIN EN 1563 (high pressure)											

TYPE KEY FLOW METERS VSI

EXAMPLE

VSI 1	/	4		G	Р	0	1	2	٧	-	3	2	W	1	5	/	X		
							Factory preset to the application	Factory preset to the application	ed.		Sensor pick-up system	Quantity of pick-up sensors	Signal output				5-pole	Modification Modification Modification plug connection (plug connection (standard design) supply volt. 10	4-pole)
							Facto		Seal type		3	2		2 Senso					
						Measuring wheel coating	Instrument bearing	S S - Instrument tolerance		Norma Increa	GMR- Sensor FPM (Viton) standard NBR (Perbunan) PTFE EPDM EPDM - 41B8 Silicone ed tolerance al tolerance (standard) sed tolerance nce steel plain bearing								
					of connection		1 2 3 4 5		4 Tolerance steel plain bearing Ball bearings Spindle bearings Bronze plain bearings Carbon bearings Steel bearings										
				ja	Туре	O C T		Dynan	ating (: nat cod m coat	ating (C		ng)							
		afion		Material	P R			onstru e conr	ction nection	s									
		Interpolation		G E H		Stainle	ess stee	el 1.4	305 (V2A)		•	OIN EN	1563	3				
Size		1 2 3 4 5 8 10 12 16	for VSI 0.02 to VSI 4	2 Imp 3 Imp 4 Imp 5 Imp 8 Imp 10 Im 12 Im	p. pro V p. pro V	V	= V / 1 = V / 2 / 2 / 3 = V /	pro Imp / 2 pro / 3 pro / 4 pro / 5 pro / 8 pro / 10 pro / 12 pro / 16 pro	Imp. Imp. Imp. Imp. Imp. Imp. Imp. Imp.		DIN EN 1563 1								
VSI 0.02 VSI 0.04 VSI 0.1 VSI 0.2 VSI 0.4 VSI 1 VSI 2 VSI 4 VSI 10		$\bigvee_{z}^{z} = \bigvee_{z}^{z} = \bigvee_{z$	0.02 m 0.04 m 0.1 m 0.2 m 0.4 m 1 m 2 m 4 m 0 m	 														olume (cm³) volume betweer	n the gear teeth

FLOW RATE MEASURING INSTRUMENT MF1 FOR 2-CHANNEL FLOW SENSOR

Flow direction indication with switching output (0 V/5 V)

2 optocoupler limit value outputs, limit values are individually programmable

Analogue output with flow rate direction dependent voltage-/current-polarity is available

0 ... (±) 10 V

0 ... (±) 20 mA

4 ... 20 mA

A power supply for flow sensor is integrated 24 Volt DC/50 mA

FLOW RATE AND VOLUME MEASURING INSTRUMENT PAXI FOR 1- OR 2-CHANNEL FLOW SENSOR

Flow rate- or volume display programmable, with linearizer function

12 Bit analogue output

0 ... 10 V

0 ... 20 mA

4 ... 20 mA

2 limit value-relay outputs

PC-Interface RS 232

A power supply for flow sensor is integrated 12 Volt/100 mA

UNIVERSAL MEASURING INSTRUMENT VFM 320 FOR DYNAMIC PROCESS MEASUREMENTS AND CLOSED LOOP CONTROLS

Flow rate, volume and ratio measurements as well as measurement and control of volume-shots or mass-shots in 2-component mixing systems

Signal processing of 2 flow sensors with 2-channel signal outputs

2 independent dynamic analogue outputs with 16 Bit digital-analogue converter D/A-converter:

 $< 3 \text{ ms } (0 \text{ Hz} \rightarrow 2 \text{ kHz} \rightarrow 0 \text{ Hz})$

The flow rate and volume values are direction dependent

(0 V
$$\stackrel{\text{Flow in direction 2}}{\longleftarrow}$$
 5 V $\stackrel{\text{Flow in direction 1}}{\longrightarrow}$ 10 V)

or direction independent

$$(10 \text{ V} \xrightarrow{\text{Flow in direction 2}} 0 \text{ V} \xrightarrow{\text{Flow in direction 1}} 10 \text{ V})$$

Real time output of analogue and digital measurement values

PC-Interface 1 x RS 232, 2 x RS 485

Special designs on request

FLOW RATE MEASURING INSTRUMENT A341-28

The evaluation electronics A341-28 simultaneously records two independent flows via flow meters and is suitable for incremental rotary transducers, proximity switches, etc.

Two individually scalable pulse inputs for 1, 2 or 4 tracks (A, /A, B, /B), suitable for input frequencies of 0.01 Hz to 1 MHz per channel

Single measurement, sum or differential measurement, ratio or percentage deviation, etc.

Linearisation function for each flow measurement

5 independent parameter sets presettable

14-bit analogue output; $0/4 \dots 20$ mA, $0 \dots 10$ V and -/+ 10 V; <1 ms reaction time

4 limit value settings with very fast responding transistor switch outputs

Programmable via an RS232 interface

2x encoder supply 24 VDC/120 mA

Standard housing 96x48mm and protection class IP65

DISPLAY A350-28

The A350-28 is a multifunctional device for flow and volume measurement.

Universal inputs (HTL/RS422) for encoders / VSE flow meters

186 x 64 pixel graphic display with touch function Bright, high-contrast display with result-based colour options

Emulation of a 7-segment display with symbols and units

Intuitive and easy parameterisation using plain text and touchscreen or via a PS232 interface

Auxiliary voltage output 5/24 VDC for encoder supply Input frequency up to 1 MHz

Linearisation with 24 support points

16 bit analog output $0/4 \dots 20mA$, $0 \dots 10V$ and -/+ 10V; 20ms reaction time

Numerous functions such as scaling, filters, startup bridging

Standard installation housing with 96 x 48 mm and protection class IP65

FREQUENCY ANALOGUE CONVERTER FU252

Conversion time only 1 msec with f > 3 kHz

14 Bit resolution (accuracy 0.1%)

Voltage output: -10 V ... +10 V 0 ... +10 V

Current output: 4 ... 20 mA 0 ... 20 mA

Suitable for conversion of quadrature signals as well as

single-channel signals

Converts ratio, product, sum or difference of two

frequencies or flow rates

Programmable linearization function and digital filter

Programmable with PC via RS232 interface

Teach function

INSTRUMENTS FOR IMPULSE CONDITIONING

FREQUENCY-/ANALOGUE CONVERTER DIGFU 1

Converter output signal for operation with 1-channel flow sensor

0 ... 10 V

0 ... 20 mA

4 ... 20 mA

Converter output signal with flow direction polarity for operation with 2-channel flow sensor

0 ... ± 10 V

 $0 ... \pm 20 \text{ mA}$

Evaluation of flow direction via digital output signal possible if a 2-channel flow sensor is connected

Proportional to flow frequency a digital output frequency signal with multiplier factor is adjustable

SIGNAL CONVERTER PGW-1 FOR 2- OR 1- CHANNEL FLOW SENSORS TO CONVERT FLOW SENSOR OUTPUT SIGNALS INTO OTHER VOLTAGE LEVELS

For example: for chart recorder with impulse input, forward-/reversecounter, computer, PC- and PLC controls

Available output voltages:

TTL 5 V, 8 V, 12 V, CMOS 15 V

Power supply/current consumption:

10 ... 30 V DC, 20 mA without flow sensor

Inverted and non-inverted output signal for both channels integrated among other things for connection on differential count inputs to achieve a distortion-free signal transmission over long cable distances

BARRIER AMPLIFIER MK-13

Economical interfaces with galvanic isolation between intrinsically safe and non-intrinsically safe circuits

Must be installed in the safe area

Are used to limit the electrical power into an intrinsically safe circuit in such a way that neither sparks nor thermal effects (hot surfaces) can cause an ignition

Connection diagram and exact type no. see page 16

RS SERIES

0 - 3,000 l/min

VHM SERIES

0.01 - 20 l/min

EF ECOFLOW SERIES

0.05 - 150 l/min

VTR SERIES

110 l/h - 4,500 m³/h

SPECIAL OPTIONS

VSE Volumentechnik GmbH Hönnestraße 49 58809 Neuenrade/Germany

Phone +49 (0) 23 94 / 616-30 Fax +49 (0) 23 94 / 616-33 info@vse-flow.com

www.vse-flow.com

